翻訳と辞書
Words near each other
・ Foch, West Virginia
・ Foch-Allenby District
・ Foch-Gilttoyees Provincial Park
・ Fochabers
・ Fochriw
・ Fochteloo
・ Fochville
・ Focicchia
・ Focillidia
・ Focillistis
・ Focillodes
・ Focillopis
・ FOCJ
・ Fock
・ Fock matrix
Fock space
・ Fock state
・ Fockbek
・ Fockbek (Amt)
・ Focke
・ Focke Museum
・ Focke Rochen
・ Focke's wind tunnel (Bremen, Germany)
・ Focke-Achgelis
・ Focke-Achgelis Fa 223
・ Focke-Achgelis Fa 225
・ Focke-Achgelis Fa 269
・ Focke-Achgelis Fa 284
・ Focke-Achgelis Fa 330
・ Focke-Wulf


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fock space : ウィキペディア英語版
Fock space
The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space . It is named after V. A. Fock who first introduced it in his 1932 paper ''Konfigurationsraum und zweite Quantelung''.〔V. Fock, ''Z. Phys''. 75 (1932), 622-647〕〔M.C. Reed, B. Simon, "Methods of Modern Mathematical Physics, Volume II", Academic Press 1975. Page 328.〕
Informally, a Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle states,
two particle states, and so on. If the identical particles are bosons, the -particle states are vectors in a symmetrized tensor product of single-particle Hilbert spaces . If the identical particles are fermions, the -particle states are vectors in an antisymmetrized tensor product of single-particle Hilbert spaces . A general state in Fock space is a linear combination of n-particle states, one for each ''n''.
Technically, the Fock space is (the Hilbert space completion of) the direct sum of the symmetric or antisymmetric tensors in the
tensor powers of a single-particle Hilbert space ,
:F_\nu(H)=\overlineS_\nu H^} ~.
Here S_\nu is the operator which symmetrizes or antisymmetrizes a tensor, depending on whether the Hilbert space describes particles obeying bosonic (\nu = +) or fermionic (\nu = -) statistics, and the overline represents the completion of the space. The bosonic (resp. fermionic) Fock space can alternatively be constructed as (the Hilbert space completion of) the symmetric tensors F_+(H) = \overline (resp. alternating tensors F_-(H) = \overline^
* H}). For every basis for } there is a natural basis of the Fock space, the Fock states.
== Definition ==

Fock space is the (Hilbert) direct sum of tensor products of copies of a single-particle Hilbert space H
:F_\nu(H)=\bigoplus_^S_\nu H^ =\mathbb \oplus H \oplus \left(S_\nu \left(H \otimes H\right)\right) \oplus \left(S_\nu \left( H \otimes H \otimes H\right)\right) \oplus \ldots
Here \mathbb, the complex scalars, consists of the states corresponding to no particles, H the states of one particle, S_\nu (H\otimes H) the states of two identical particles etc.
A typical state in F_\nu(H) is given by
:|\Psi\rangle_\nu= |\Psi_0\rangle_\nu \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \ldots = a_0 |0\rangle \oplus |\psi_1\rangle \oplus \sum_ a_|\psi_, \psi_ \rangle_\nu \oplus \ldots
where
:|0\rangle is a vector of length 1, called the vacuum state and \,a_0 \in \mathbb is a complex coefficient,
: |\psi_1\rangle \in H is a state in the single particle Hilbert space,
: |\psi_ \psi_ \rangle_\nu = \frac(|\psi_\rangle \otimes|\psi_\rangle + (-1)^\nu|\psi_\rangle\otimes|\psi_\rangle) \in S_\nu(H \otimes H), and a_ = \nu a_ \in \mathbb is a complex coefficient
:etc.
The convergence of this infinite sum is important if F_\nu(H) is to be a Hilbert space. Technically we require F_\nu(H) to be the Hilbert space completion of the algebraic direct sum. It consists of all infinite tuples |\Psi\rangle_\nu = (|\Psi_0\rangle_\nu , |\Psi_1\rangle_\nu ,
|\Psi_2\rangle_\nu, \ldots) such that the norm, defined by the inner product is finite
:\| |\Psi\rangle_\nu \|_\nu^2 = \sum_^\infty \langle \Psi_n |\Psi_n \rangle_\nu < \infty
where the n particle norm is defined by
: \langle \Psi_n | \Psi_n \rangle_\nu = \sum_a_^
*a_ \langle \psi_| \psi_ \rangle\cdots \langle \psi_| \psi_ \rangle
i.e. the restriction of the norm on the tensor product H^
For two states
:|\Psi\rangle_\nu= |\Psi_0\rangle_\nu \oplus |\Psi_1\rangle_\nu \oplus |\Psi_2\rangle_\nu \oplus \ldots = a_0 |0\rangle \oplus |\psi_1\rangle \oplus \sum_ a_|\psi_, \psi_ \rangle_\nu \oplus \ldots, and
:|\Phi\rangle_\nu=|\Phi_0\rangle_\nu \oplus |\Phi_1\rangle_\nu \oplus |\Phi_2\rangle_\nu \oplus \ldots = b_0 |0\rangle \oplus |\phi_1\rangle \oplus \sum_ b_|\phi_, \phi_ \rangle_\nu \oplus \ldots
the inner product on F_\nu(H) is then defined as
:\langle \Psi |\Phi\rangle_\nu:= \sum_n \langle \Psi_n| \Phi_n \rangle_\nu = a_0^
* b_0 + \langle\psi_1 | \phi_1 \rangle +\sum_a_^
*b_\langle \phi_|\psi_\rangle\langle\psi_| \phi_ \rangle_\nu + \ldots
where we use the inner products on each of the n-particle Hilbert spaces. Note that, in particular the n particle subspaces are orthogonal for different n.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fock space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.